Source code for nvtripy.frontend.ops.binary.maximum

# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from nvtripy import export
from nvtripy.frontend.ops.binary.create import create_binary_op
from nvtripy.trace.ops.binary import Max
from nvtripy.utils import wrappers


[docs] @export.public_api(document_under="operations/functions") @wrappers.interface( dtype_constraints={"lhs": "T1", "rhs": "T1", wrappers.RETURN_VALUE: "T1"}, dtype_variables={"T1": ["float32", "float16", "bfloat16", "int8", "int32", "int64", "bool"]}, ) def maximum(lhs: "nvtripy.Tensor", rhs: "nvtripy.Tensor") -> "nvtripy.Tensor": """ Performs an elementwise maximum. Args: lhs: The first input tensor. rhs: The second input tensor. It should be broadcast-compatible. Returns: A new tensor with the broadcasted shape. .. code-block:: python :linenos: a = tp.Tensor([1.0, 6.0]) b = tp.Tensor([2.0, 3.0]) output = tp.maximum(a, b) assert np.array_equal(cp.from_dlpack(output).get(), np.array([2.0, 6.0])) """ return create_binary_op(Max, lhs, rhs)