# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from nvtripy import export
from nvtripy.frontend import utils as frontend_utils
from nvtripy.utils import wrappers
[docs]
@export.public_api(document_under="operations/functions")
@wrappers.interface(
dtype_constraints={"input": "T1", wrappers.RETURN_VALUE: "T1"},
dtype_variables={
"T1": ["float32", "float16", "bfloat16", "int32"],
},
)
def cumsum(input: "nvtripy.Tensor", dim: int) -> "nvtripy.Tensor":
"""
Computes the cumulative sum of elements in the input along the dimension ``dim``.
Args:
input: The input tensor.
dim: The dimension along which to compute the cumulative sum.
Returns:
A tensor of the same shape as the input.
.. code-block:: python
:linenos:
:caption: 1D tensor
input = tp.arange(4, 0, step=-1, dtype=tp.int32)
output = tp.cumsum(input, dim=0)
assert cp.array_equal(cp.cumsum(cp.from_dlpack(input)), cp.from_dlpack(output))
.. code-block:: python
:linenos:
:caption: 2D tensor
input = tp.reshape(tp.arange(9, 0, step=-1, dtype=tp.int32), (3, 3))
output = tp.cumsum(input, dim=0)
assert cp.array_equal(cp.cumsum(cp.from_dlpack(input), axis=0), cp.from_dlpack(output))
"""
# Consider:
#
# a = [3, 2, 1]
#
# then, we can implement cumsum as:
#
# out = a @ [[1, 1, 1]
# [0, 1, 1]
# [0, 0, 1]]
#
# which will yield:
#
# out = [3, 3 + 2, 3 + 2 + 1]
#
# In the general case where `a` is an N-dimensional tensor, we simply transpose
# the dimension of interest to the innermost position and then carry out the
# GEMM described above, then tranpose the output back.
from nvtripy.frontend.trace.ops.permute import permute
from nvtripy.frontend.ops.tensor_initializers import triu, ones
dim = frontend_utils.process_dim(dim, input.rank)
# For the examples in the comments that follow, assume the input shape is (3, 5, 7) and
# we are applying cumsum over dim=1 (the dimension of length 5).
# Swap dim to innermost position: (3, 5, 7) -> (3, 7, 5)
move_to_innermost_perm = list(range(input.rank))
del move_to_innermost_perm[dim]
move_to_innermost_perm.append(dim)
transposed = permute(input, move_to_innermost_perm)
# GEMM with square upper triangular matrix: (3, 7, 5) @ (5, 5) -> (3, 7, 5)
# TODO: We should replace this with:
# shape = transposed.shape[-1:] * 2
# once the relevant shape inference bugs are fixed.
shape = (transposed.shape[input.rank - 1], transposed.shape[input.rank - 1])
out = transposed @ triu(ones(shape=shape, dtype=transposed.dtype))
# Swap innermost position back to `dim`: (3, 7, 5) -> (3, 5, 7)
reset_dim_perm = list(range(input.rank))
del reset_dim_perm[-1]
reset_dim_perm.insert(dim, input.rank - 1)
out = permute(out, reset_dim_perm)
return out