Source code for nvtripy.frontend.ops.cumsum

# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from nvtripy import export

from nvtripy.frontend import utils as frontend_utils
from nvtripy.utils import wrappers


[docs] @export.public_api(document_under="operations/functions") @wrappers.interface( dtype_constraints={"input": "T1", wrappers.RETURN_VALUE: "T1"}, dtype_variables={ "T1": ["float32", "float16", "bfloat16", "int32"], }, ) def cumsum(input: "nvtripy.Tensor", dim: int) -> "nvtripy.Tensor": """ Computes the cumulative sum of elements in the input along the dimension ``dim``. Args: input: The input tensor. dim: The dimension along which to compute the cumulative sum. Returns: A tensor of the same shape as the input. .. code-block:: python :linenos: :caption: 1D tensor input = tp.arange(4, 0, step=-1, dtype=tp.int32) output = tp.cumsum(input, dim=0) assert cp.array_equal(cp.cumsum(cp.from_dlpack(input)), cp.from_dlpack(output)) .. code-block:: python :linenos: :caption: 2D tensor input = tp.reshape(tp.arange(9, 0, step=-1, dtype=tp.int32), (3, 3)) output = tp.cumsum(input, dim=0) assert cp.array_equal(cp.cumsum(cp.from_dlpack(input), axis=0), cp.from_dlpack(output)) """ # Consider: # # a = [3, 2, 1] # # then, we can implement cumsum as: # # out = a @ [[1, 1, 1] # [0, 1, 1] # [0, 0, 1]] # # which will yield: # # out = [3, 3 + 2, 3 + 2 + 1] # # In the general case where `a` is an N-dimensional tensor, we simply transpose # the dimension of interest to the innermost position and then carry out the # GEMM described above, then tranpose the output back. from nvtripy.frontend.trace.ops.permute import permute from nvtripy.frontend.ops.tensor_initializers import triu, ones dim = frontend_utils.process_dim(dim, input.rank) # For the examples in the comments that follow, assume the input shape is (3, 5, 7) and # we are applying cumsum over dim=1 (the dimension of length 5). # Swap dim to innermost position: (3, 5, 7) -> (3, 7, 5) move_to_innermost_perm = list(range(input.rank)) del move_to_innermost_perm[dim] move_to_innermost_perm.append(dim) transposed = permute(input, move_to_innermost_perm) # GEMM with square upper triangular matrix: (3, 7, 5) @ (5, 5) -> (3, 7, 5) # TODO: We should replace this with: # shape = transposed.shape[-1:] * 2 # once the relevant shape inference bugs are fixed. shape = (transposed.shape[input.rank - 1], transposed.shape[input.rank - 1]) out = transposed @ triu(ones(shape=shape, dtype=transposed.dtype)) # Swap innermost position back to `dim`: (3, 7, 5) -> (3, 5, 7) reset_dim_perm = list(range(input.rank)) del reset_dim_perm[-1] reset_dim_perm.insert(dim, input.rank - 1) out = permute(out, reset_dim_perm) return out