## SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.# SPDX-License-Identifier: Apache-2.0## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.#fromnvtripyimportexportfromnvtripy.utilsimportwrappers
[docs]@export.public_api(document_under="operations/functions")@wrappers.interface(dtype_constraints={"vec1":"T1","vec2":"T1",wrappers.RETURN_VALUE:"T1"},dtype_variables={"T1":["float32","float16","bfloat16","int32"]},)defouter(vec1:"nvtripy.Tensor",vec2:"nvtripy.Tensor")->"nvtripy.Tensor":r""" Computes the outer product of 1-d vectors ``vec1`` and ``vec2``, such that the output shape is :math:`(m, n)` if the inputs are of size :math:`(m,)` and :math:`(n,)` respectively. Args: vec1: The first 1d input vector. vec2: The second 1d input vector. Returns: The outer product of the input vectors. .. code-block:: python :linenos: v1 = tp.arange(5, dtype=tp.float32) v2 = tp.arange(4, dtype=tp.float32) output = tp.outer(v1, v2) t1 = torch.arange(5, dtype=torch.float32) # doc: omit t2 = torch.arange(4, dtype=torch.float32) # doc: omit torch_out = torch.outer(t1, t2) # doc: omit assert tp.allclose(output, tp.Tensor(torch_out)) assert output.shape == list(torch_out.shape) """fromnvtripy.common.exceptionimportraise_errorfromnvtripy.frontend.ops.unsqueezeimportunsqueezeifvec1.rank!=1orvec2.rank!=1:raise_error("Expected input vectors to be 1-d.",[f"Got vec1.rank={vec1.rank}, ",f"vec2.rank={vec2.rank}"],)returnunsqueeze(vec1,-1)@unsqueeze(vec2,0)