Source code for nvtripy.frontend.ops.pad

#
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from typing import Sequence, Tuple, Union

from nvtripy import export
from nvtripy.common.exception import raise_error
from nvtripy.frontend.ops import utils as op_utils
from nvtripy.trace.ops.shape import Shape
from nvtripy.trace.ops.slice import SliceFill
from nvtripy.types import IntLike
from nvtripy.utils import wrappers


[docs] @export.public_api(document_under="operations/functions") @wrappers.interface( dtype_constraints={"input": "T1", wrappers.RETURN_VALUE: "T1"}, dtype_variables={"T1": ["float32", "float16", "bool", "int32", "int64"]}, ) def pad( input: "nvtripy.Tensor", pad: Sequence[Tuple[IntLike, IntLike]], mode: str = "constant", value: Union[int, float] = 0, ) -> "nvtripy.Tensor": r""" Pads the input tensor. Args: input: The input tensor. pad: A sequence of padding sizes of each dimension. Its length must be equal to the rank of ``input``. Each element of ``pad`` is a tuple of integers or :class:`DimensionSize` s ``(low, high)``, which represents the padding sizes before the lowest index and after the highest index at the corresponding dimension. mode: The padding mode. Only "constant" is supported. value: The padding value for "constant" mode. Returns: The padded tensor. .. code-block:: python :linenos: :caption: Constant padding. input = tp.reshape(tp.arange(6, dtype=tp.float32), (2, 3)) output = tp.pad(input, [(1, 0), (0, 1)]) input_np = np.arange(6, dtype=np.float32).reshape((2, 3)) # doc: omit expected = np.pad(input_np, ((1, 0), (0, 1))) # doc: omit assert np.array_equal(cp.from_dlpack(output).get(), expected) """ from nvtripy.frontend.tensor import Tensor if len(pad) != input.rank: raise_error( "`pad` length must equal to the rank of `input`.", [f"Got pad={pad}, ", f" input's rank={input.rank}"], ) supported_modes = {"constant"} if mode not in supported_modes: raise_error( "Unsupported padding mode.", [f"Got mode={mode}, while supported modes are {supported_modes}"], ) padding_lows, padding_highs = list(zip(*pad)) padding_lows = op_utils.tensor_from_shape_like(padding_lows) padding_highs = op_utils.tensor_from_shape_like(padding_highs) starts = -padding_lows # Not using input.shape because we need a `Tensor` here input_shape = op_utils.create_op(Shape, [input]) sizes = input_shape + padding_lows + padding_highs steps = op_utils.tensor_from_shape_like([1] * input.rank) return op_utils.create_op(SliceFill, [input, starts, sizes, steps, Tensor(value, dtype=input.dtype)])