Source code for nvtripy.frontend.ops.pooling.maxpool
## SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.# SPDX-License-Identifier: Apache-2.0## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.#fromtypingimportOptional,Sequence,Tuplefromnvtripyimportexportfromnvtripy.frontend.opsimportutilsasop_utilsfromnvtripy.frontend.ops.poolingimportutilsaspooling_utilsfromnvtripy.trace.ops.poolingimportMaxPoolingfromnvtripy.utilsimportwrappers
[docs]@export.public_api(document_under="operations/functions")@wrappers.interface(dtype_constraints={"input":"T1",wrappers.RETURN_VALUE:"T1"},dtype_variables={"T1":["float32","bfloat16","float16","int8"]},)defmaxpool(input:"nvtripy.Tensor",kernel_dims:Sequence[int],stride:Optional[Sequence[int]]=None,padding:Optional[Sequence[Tuple[int,int]]]=None,)->"nvtripy.Tensor":r""" Applies a max pooling over the input tensor. The output's non-spatial dimensions are the same as input. For each input spatial dimension :math:`D_{i}`, the corresponding output dimension will be: .. math:: D_{out_i} = \left\lfloor\frac{D_{i} + \text{padding_before[i]} + \text{padding_after[i]} - \text{kernel_dims[i]}}{\text{stride[i]}} + 1\right\rfloor Args: input: The input tensor. kernel_dims: The spatial shape of the pooling window. Only 2-D or 3-D ``kernel_dims`` are supported. If the input has :class:`int8` datatype, ``kernel_dims`` can only be 2-D. stride: A sequence of length :math:`M` indicating the stride of pooling across each spatial dimension, where :math:`M` is the number of spatial dimensions, i.e. :math:`M = \text{rank(input)} - 2`. Defaults to all 1. padding: A sequence of pairs of integers of length :math:`M` indicating the zero padding to apply to the input along each spatial dimension before and after the dimension respectively, where :math:`M` is the number of spatial dimensions, i.e. :math:`M = \text{rank(input)} - 2`. Defaults to all 0. Returns: The result tensor after the pooling operation. .. code-block:: python :linenos: input = tp.reshape(tp.arange(16, dtype=tp.float32), (1, 1, 4, 4)) output = tp.maxpool(input, kernel_dims=(2, 2)) pool_torch = torch.nn.MaxPool2d((2, 2), stride=1) # doc: omit expected = pool_torch(torch.from_dlpack(input).to("cpu")) # doc: omit assert torch.allclose(torch.from_dlpack(output).to("cpu"), expected) """op_utils.check_conv_pooling_args(kernel_dims,stride,padding)stride,pre_padding,post_padding=pooling_utils.transform_pooling_params(kernel_dims,stride,padding)returnop_utils.create_op(MaxPooling,[input],kernel_dims,stride,pre_padding,post_padding)