# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.# SPDX-License-Identifier: Apache-2.0## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.fromtypingimportTuplefromnvtripyimportexportfromnvtripy.frontend.ops.reduce.utilsimporttopk_implfromnvtripy.trace.ops.topkimportTopKMaxfromnvtripy.utilsimportwrappers
[docs]@export.public_api(document_under="operations/functions")@wrappers.interface(dtype_constraints={"input":"T1",wrappers.RETURN_VALUE:["T1","T2"]},dtype_variables={"T1":["float32","float16","bfloat16","int32","int64"],"T2":["int32"]},)deftopk(input:"nvtripy.Tensor",k:int,dim:int)->Tuple["nvtripy.Tensor","nvtripy.Tensor"]:""" Returns the ``k`` largest values in the tensor and their indices along the specified dimension. Args: input: The input tensor. k: The number of values to take. dim: The dimension along which to find the top-k values. Returns: The top-k values and indices, in sorted order. .. code-block:: python :linenos: inp = tp.iota((1, 5), dim=1) + 2.5 values, indices = tp.topk(inp, k=2, dim=1) assert tp.equal(values, tp.Tensor([[6.5, 5.5]])) assert tp.equal(indices, tp.Tensor([[4, 3]])) """returntopk_impl(TopKMax,input,k=k,dim=dim)