# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.# SPDX-License-Identifier: Apache-2.0## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.importmathfromtypingimportOptional,Sequence,Unionfromnvtripyimportexportfromnvtripy.frontend.opsimportutilsasop_utilsfromnvtripy.utilsimportwrappers
[docs]@export.public_api(document_under="operations/functions")@wrappers.interface(dtype_constraints={"input":"T1",wrappers.RETURN_VALUE:"T1"},dtype_variables={"T1":["float32","float16","bfloat16"]},)defvar(input:"nvtripy.Tensor",dim:Optional[Union[int,Sequence[int]]]=None,keepdim:bool=False,correction:int=1)->"nvtripy.Tensor":r""" Returns a new tensor containing the variance of the elements of the input tensor along the specified dimension. The variance along a dimension is defined as: :math:`\sigma^2 = \Large \frac{1}{max(0, N - \text{correction})} \large \sum_{i=1}^N (x_i - \bar{x})^2` where :math:`N` is the length of the dimension, :math:`x_i` is the :math:`i^{th}` element along the dimension, and :math:`\bar{x}` is the mean. Args: input: The input tensor. dim: The dimension or dimensions along which to reduce. If this is not provided, all dimensions are reduced. keepdim: Whether to retain reduced dimensions in the output. If this is False, reduced dimensions will be squeezed. correction: Defaults to Bessel's correction. Returns: variance of the input tensor .. code-block:: python :linenos: input = tp.reshape(tp.arange(6, dtype=tp.float32), (2, 3)) output = tp.var(input, dim=1, keepdim=True) torch_input = torch.arange(6, dtype=torch.float32).reshape((2, 3)) # doc: omit assert np.array_equal(cp.from_dlpack(output).get(), np.from_dlpack(torch_input.var(dim=1, keepdim=True))) """fromnvtripy.frontendimportTensorfromnvtripy.frontend.ops.binary.maximumimportmaximumfromnvtripy.frontend.ops.castimportcastfromnvtripy.frontend.ops.reduce.meanimportmeanfromnvtripy.frontend.ops.reduce.sumimportsumdim=op_utils.process_dim_sequence(dim,input.rank)mean_val=mean(input,dim=dim,keepdim=True)sub=(input-mean_val)**2.0sum_val=sum(sub,dim=dim,keepdim=keepdim)# compute number of elements in the array and divide by number of elements in dimsshape=sub.shapenum_elements=math.prod([shape[d]fordindim])num_elements=maximum(num_elements-Tensor(correction),Tensor(0))num_elements=cast(num_elements,sum_val.dtype)returnsum_val/num_elements