Source code for nvtripy.frontend.ops.repeat

# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union

from nvtripy import export
from nvtripy.common.exception import raise_error
from nvtripy.frontend import utils as frontend_utils
from nvtripy.types import IntLike
from nvtripy.utils import wrappers


[docs] @export.public_api(document_under="operations/functions") @wrappers.interface( dtype_constraints={"input": "T1", wrappers.RETURN_VALUE: "T1"}, dtype_variables={ "T1": ["float32", "float16", "bfloat16", "int4", "float8", "int8", "int32", "int64", "bool"], }, ) def repeat(input: "nvtripy.Tensor", repeats: IntLike, dim: int) -> "nvtripy.Tensor": """ Repeats each element of a tensor after itself along the specified dimension. Args: input: The input tensor. repeats: The number of times to repeat each element. dim: The dimension along which to repeat values. Returns: The new tensor. .. code-block:: python :linenos: :caption: 1D tensor inp = tp.arange(4, dtype=tp.int32) out0 = tp.repeat(inp, 2, dim=0) np_inp = np.from_dlpack(tp.copy(inp, device=tp.device("cpu"))) # doc: omit ref_out0 = np.repeat(np_inp, 2, 0) # doc: omit assert np.array_equal(ref_out0, np.from_dlpack(tp.copy(out0, device=tp.device("cpu")))) .. code-block:: python :linenos: :caption: 2D tensor inp = tp.reshape(tp.arange(4, dtype=tp.int32), (2, 2)) out0 = tp.repeat(inp, 2, dim=0) out1 = tp.repeat(inp, 2, dim=1) np_inp = np.from_dlpack(tp.copy(inp, device=tp.device("cpu"))) # doc: omit ref_out0 = np.repeat(np_inp, 2, 0) # doc: omit assert np.array_equal(ref_out0, np.from_dlpack(tp.copy(out0, device=tp.device("cpu")))) ref_out1 = np.repeat(np_inp, 2, 1) # doc: omit assert np.array_equal(ref_out1, np.from_dlpack(tp.copy(out1, device=tp.device("cpu")))) """ from nvtripy.frontend.dimension_size import DimensionSize from nvtripy.frontend.ops.unsqueeze import unsqueeze from nvtripy.frontend.trace.ops.expand import expand from nvtripy.frontend.trace.ops.reshape import reshape dim = frontend_utils.process_dim(dim, input.rank) if isinstance(repeats, int): if repeats < 0: raise_error("`repeats` value must be non-negative.", [f"Got: repeats={repeats}."]) repeats = DimensionSize(repeats) # By constraining repeats to be a single integer, we can use a very # simple implementation for repeat. # Imagine we have: # a = [1, 2] # out = tp.repeat(a, 2, dim=0) # # We achieve this by: # # [1, 2] -> [[1], -> [[1, 1], -> [1, 1, 2, 2] # [2],] [2, 2],] # out = unsqueeze(input, dim + 1) input_shape = input.shape out = expand(out, input_shape[: dim + 1] + [repeats] + input_shape[dim + 1 :]) input_shape[dim] = input_shape[dim] * repeats return reshape(out, input_shape)