## SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.# SPDX-License-Identifier: Apache-2.0## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.#fromnvtripyimportexportfromnvtripy.utilsimportwrappers
[docs]@export.public_api(document_under="operations/functions")@wrappers.interface(dtype_constraints={"input":"T1",wrappers.RETURN_VALUE:"T1"},dtype_variables={"T1":["float32","float16","bfloat16"],},)defsilu(input:"nvtripy.Tensor")->"nvtripy.Tensor":r""" Applies the Sigmoid Linear Unit (SiLU) function to each element of the input tensor. This function is also known as the swish function. :math:`\text{silu}(x) = x \cdot \sigma (x)` where :math:`\sigma (x)_i = \frac{1}{1 + \exp{-x_i}}` Args: input: The input tensor. Returns: A tensor of the same shape as the input. .. code-block:: python :linenos: input = tp.Tensor([1., 2., 3., 4.], dtype=tp.float32) output = tp.silu(input) t = torch.tensor([1, 2, 3, 4], dtype=torch.float32) # doc: omit assert tp.allclose(output, tp.Tensor(torch.nn.functional.silu(t))) """fromnvtripy.frontend.trace.ops.unary_elementwiseimportexpreturninput/(1.0+exp(-1.0*input))