## SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.# SPDX-License-Identifier: Apache-2.0## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.#fromnvtripyimportexportfromnvtripy.utilsimportwrappers
[docs]@export.public_api(document_under="operations/functions")@wrappers.interface(dtype_constraints={"input":"T1",wrappers.RETURN_VALUE:"T1"},dtype_variables={"T1":["float32","float16","bfloat16"],},)defsoftmax(input:"nvtripy.Tensor",dim:int=None)->"nvtripy.Tensor":r""" Applies the softmax function to the input tensor: :math:`\text{softmax}(x_{i}) = \Large \frac{e^{x_{i}}}{\sum_{j=1}^N e^{x_{j}}} \normalsize for\ i=1,2,\dots,N` where :math:`x_{i}` is the :math:`i^{th}` element along dimension ``dim`` and :math:`N` is the size of the dimension. Effectively, for each slice along ``dim``, elements are scaled such that they lie in the range :math:`[0, 1]` and sum to 1. Args: input: The input tensor. dim: The dimension along which softmax will be computed. If this is ``None``, softmax is applied over the whole input array. Returns: A tensor of the same shape as the input. .. code-block:: python :linenos: input = tp.iota([2, 2], dtype=tp.float32) output = tp.softmax(input, dim=0) assert tp.allclose(output, tp.Tensor(torch.Tensor([[0., 0.], [1., 1.]]).softmax(0))) """fromnvtripy.frontend.trace.ops.reduceimportmax,sumfromnvtripy.frontend.trace.ops.unary_elementwiseimportexpexp_inp=exp(input-max(input,dim,keepdim=True))returnexp_inp/sum(exp_inp,dim,keepdim=True)