#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numbers
from typing import Optional, Union
from nvtripy import export
from nvtripy.common import datatype
from nvtripy.common.exception import raise_error
from nvtripy.frontend.trace.ops.fill import full, full_like
from nvtripy.frontend.trace.ops.iota import iota, iota_like
from nvtripy.frontend.trace.ops.where import where
from nvtripy.utils import wrappers
[docs]
@export.public_api(document_under="operations/initializers")
@wrappers.interface(
dtype_constraints={"dtype": "T1", wrappers.RETURN_VALUE: "T1"},
dtype_variables={
"T1": ["float32", "float16", "bfloat16", "float8", "int8", "int4", "int32", "int64", "bool"],
},
)
def ones(
shape: "nvtripy.types.ShapeLike",
dtype: datatype.dtype = datatype.float32,
) -> "nvtripy.Tensor":
"""
Creates a Tensor of the specified shape and dtype with all elements set to 1.
Args:
shape: The desired shape of the tensor.
dtype: Datatype of elements.
Returns:
A tensor of shape ``shape`` with all elements set to 1.
.. code-block:: python
:linenos:
output = tp.ones([2, 3])
assert np.array_equal(cp.from_dlpack(output).get(), np.ones([2, 3], dtype=np.float32))
.. seealso:: :func:`ones_like`, :func:`full`
"""
return full(shape, 1, dtype)
[docs]
@export.public_api(document_under="operations/initializers")
@wrappers.interface(
dtype_constraints={"dtype": "T1", wrappers.RETURN_VALUE: "T1"},
dtype_variables={
"T1": ["float32", "float16", "bfloat16", "float8", "int8", "int4", "int32", "int64", "bool"],
},
)
def zeros(
shape: "nvtripy.types.ShapeLike",
dtype: datatype.dtype = datatype.float32,
) -> "nvtripy.Tensor":
"""
Creates a Tensor of the specified shape and dtype with all elements set to 0.
Args:
shape: The desired shape of the tensor.
dtype: Datatype of elements.
Returns:
A tensor of shape ``shape`` with all elements set to 0.
.. code-block:: python
:linenos:
output = tp.zeros([2, 3])
assert np.array_equal(cp.from_dlpack(output).get(), np.zeros([2, 3], dtype=np.float32))
.. seealso:: :func:`zeros_like`, :func:`full`
"""
return full(shape, 0, dtype)
[docs]
@export.public_api(document_under="operations/initializers")
@wrappers.interface(
dtype_constraints={"input": "T1", "dtype": "T2", wrappers.RETURN_VALUE: "T2"},
dtype_variables={
"T1": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"],
"T2": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"],
},
)
def ones_like(input: "nvtripy.Tensor", dtype: Optional[datatype.dtype] = None) -> "nvtripy.Tensor":
"""
Creates a tensor with all elements set to 1 of the same shape as the input tensor.
Args:
input: The input tensor.
dtype: Datatype of elements. If set to ``None``, the datatype of the input tensor is used.
Returns:
A tensor of the same shape as the input with all elements set to 1.
.. code-block:: python
:linenos:
input = tp.zeros([2, 3], dtype=tp.float32)
output = tp.ones_like(input)
assert np.array_equal(cp.from_dlpack(output).get(), np.ones([2, 3], dtype=np.float32))
.. seealso:: :func:`ones`, :func:`full_like`
"""
return full_like(input, 1, dtype)
[docs]
@export.public_api(document_under="operations/initializers")
@wrappers.interface(
dtype_constraints={"input": "T1", "dtype": "T2", wrappers.RETURN_VALUE: "T2"},
dtype_variables={
"T1": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"],
"T2": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"],
},
)
def zeros_like(input: "nvtripy.Tensor", dtype: Optional[datatype.dtype] = None) -> "nvtripy.Tensor":
"""
Creates a Tensor with all elements set to 0 of the same shape as the input tensor.
Args:
input: The input tensor.
dtype: Datatype of elements. If set to ``None``, the datatype of the input tensor is used.
Returns:
A tensor of the same shape as the input with all elements set to 0.
.. code-block:: python
:linenos:
input = tp.iota([2, 3], dtype=tp.float32)
output = tp.zeros_like(input)
assert np.array_equal(cp.from_dlpack(output).get(), np.zeros([2, 3], dtype=np.float32))
.. seealso:: :func:`zeros`, :func:`full_like`
"""
return full_like(input, 0, dtype)
[docs]
@export.public_api(document_under="operations/initializers")
@wrappers.interface(
dtype_constraints={"tensor": "T1", wrappers.RETURN_VALUE: "T1"},
dtype_variables={
"T1": ["float32", "float16", "bfloat16", "int32", "int64", "bool"],
},
)
def tril(tensor: "nvtripy.Tensor", diagonal: int = 0) -> "nvtripy.Tensor":
r"""
Returns the lower triangular part of each :math:`[M, N]` matrix in the tensor, with all other elements set to 0.
If the tensor has more than two dimensions, it is treated as a batch of matrices.
Args:
tensor: The nvtripy tensor to operate on.
diagonal: The diagonal above which to zero elements.
``diagonal=0`` indicates the main diagonal which is defined by the set of indices
:math:`{{(i, i)}}` where :math:`i \in [0, min(M, N))`.
Positive values indicate the diagonal which is that many diagonals above the main one,
while negative values indicate one which is below.
Returns:
A tensor of the same shape as this tensor.
.. code-block:: python
:linenos:
:caption: Main Diagonal
input = tp.iota((2, 1, 3, 3), dim=2) + 1.
output = tp.tril(input)
assert np.array_equal(cp.from_dlpack(output).get(), np.tril(cp.from_dlpack(input).get()))
.. code-block:: python
:linenos:
:caption: Two Diagonals Above Main
input = tp.iota((5, 5)) + 1. # doc: omit
output = tp.tril(input, diagonal=2)
assert np.array_equal(cp.from_dlpack(output).get(), np.tril(cp.from_dlpack(input).get(), 2))
.. code-block:: python
:linenos:
:caption: One Diagonal Below Main
input = tp.iota((5, 5)) + 1. # doc: omit
output = tp.tril(input, diagonal=-1)
assert np.array_equal(cp.from_dlpack(output).get(), np.tril(cp.from_dlpack(input).get(), -1))
"""
tri_mask = (iota_like(tensor, -2, datatype.int32) + full_like(tensor, diagonal, datatype.int32)) >= iota_like(
tensor, -1, datatype.int32
)
zeros_tensor = zeros_like(tensor)
return where(tri_mask, tensor, zeros_tensor)
[docs]
@export.public_api(document_under="operations/initializers")
@wrappers.interface(
dtype_constraints={"tensor": "T1", wrappers.RETURN_VALUE: "T1"},
dtype_variables={
"T1": ["float32", "float16", "bfloat16", "int32", "int64", "bool"],
},
)
def triu(tensor: "nvtripy.Tensor", diagonal: int = 0) -> "nvtripy.Tensor":
r"""
Returns the upper triangular part of each :math:`[M, N]` matrix in the tensor, with all other elements set to 0.
If the tensor has more than two dimensions, it is treated as a batch of matrices.
Args:
tensor: The nvtripy tensor to operate on.
diagonal: The diagonal below which to zero elements.
``diagonal=0`` indicates the main diagonal which is defined by the set of indices
:math:`{{(i, i)}}` where :math:`i \in [0, min(M, N))`.
Positive values indicate the diagonal which is that many diagonals above the main one,
while negative values indicate one which is below.
Returns:
A tensor of the same shape as this tensor.
.. code-block:: python
:linenos:
:caption: Main Diagonal
input = tp.iota((2, 1, 3, 3), dim=2) + 1.
output = tp.triu(input)
assert np.array_equal(cp.from_dlpack(output).get(), np.triu(cp.from_dlpack(input).get()))
.. code-block:: python
:linenos:
:caption: Two Diagonals Above Main
input = tp.iota((5, 5)) + 1. # doc: omit
output = tp.triu(input, diagonal=2)
assert np.array_equal(cp.from_dlpack(output).get(), np.triu(cp.from_dlpack(input).get(), 2))
.. code-block:: python
:linenos:
:caption: One Diagonal Below Main
input = tp.iota((5, 5)) + 1. # doc: omit
output = tp.triu(input, diagonal=-1)
assert np.array_equal(cp.from_dlpack(output).get(), np.triu(cp.from_dlpack(input).get(), -1))
"""
tri_mask = (iota_like(tensor, -2, datatype.int32) + full_like(tensor, diagonal, datatype.int32)) <= iota_like(
tensor, -1, datatype.int32
)
zeros_tensor = zeros_like(tensor)
return where(tri_mask, tensor, zeros_tensor)
@export.public_api(document_under="operations/initializers")
@wrappers.interface(
dtype_constraints={"dtype": "T1", wrappers.RETURN_VALUE: "T1"},
dtype_variables={
"T1": ["float32", "float16", "bfloat16", "int8", "int32", "int64", "bool"],
},
)
def arange(
start: Union[numbers.Number, "nvtripy.DimensionSize"],
stop: Union[numbers.Number, "nvtripy.DimensionSize"],
step: Union[numbers.Number, "nvtripy.DimensionSize"] = 1,
dtype: "nvtripy.dtype" = datatype.float32,
) -> "nvtripy.Tensor":
r"""
Returns a 1D tensor containing a sequence of numbers in the half-open interval
:math:`[\text{start}, \text{stop})` incrementing by :math:`\text{step}`.
Args:
start: The inclusive lower bound of the values to generate. If a tensor is provided, it must be a scalar tensor.
stop: The exclusive upper bound of the values to generate. If a tensor is provided, it must be a scalar tensor.
step: The spacing between values. If a tensor is provided, it must be a scalar tensor.
dtype: The desired data type of the tensor.
Returns:
A tensor of shape :math:`[\frac{\text{stop}-\text{start}}{\text{step}}]`.
.. code-block:: python
:linenos:
output = tp.arange(0.5, 2.5)
assert (cp.from_dlpack(output).get() == np.arange(0.5, 2.5, dtype=np.float32)).all()
.. code-block:: python
:linenos:
:caption: Custom ``step`` Value
output = tp.arange(2.3, 0.8, -0.2)
assert tp.allclose(output, tp.Tensor(np.arange(2.3, 0.8, -0.2, dtype=np.float32)))
"""
from nvtripy.frontend.dimension_size import DimensionSize
if isinstance(step, numbers.Number) and step == 0:
raise_error("Step in arange cannot be 0.", [])
# math.ceil(a / b) is same as -(-a // b). Don't use math.ceil as start, stop or step can be Tensor.
size = 0 - ((start - stop) // step)
if isinstance(size, numbers.Number) and size <= 0:
raise_error(
"Arange tensor is empty.",
details=[
f"start={start}, stop={stop}, step={step}",
],
)
if not isinstance(size, DimensionSize):
size = int(size)
size = (size,)
output = iota(size, 0, dtype) * full(size, step, dtype) + full(size, start, dtype)
return output
[docs]
@export.public_api(document_under="operations/initializers")
@wrappers.interface(
dtype_constraints={"dtype": "T1", wrappers.RETURN_VALUE: "T1"},
dtype_variables={
"T1": ["float32", "float16", "bfloat16", "int8", "int32", "int64", "bool"],
},
)
def arange(
stop: Union[numbers.Number, "nvtripy.DimensionSize"], dtype: "nvtripy.dtype" = datatype.float32
) -> "nvtripy.Tensor":
r"""
Returns a 1D tensor containing a sequence of numbers in the half-open interval
:math:`[0, \text{stop})` incrementing by 1.
Args:
stop: The exclusive upper bound of the values to generate.
dtype: The desired datatype of the tensor.
Returns:
A tensor of shape :math:`[\text{stop}]`.
.. code-block:: python
:linenos:
output = tp.arange(5)
assert (cp.from_dlpack(output).get() == np.arange(5, dtype=np.float32)).all()
"""
return arange(0, stop, dtype=dtype)