## SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.# SPDX-License-Identifier: Apache-2.0## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.#fromnvtripyimportexportfromnvtripy.frontend.opsimportutilsasop_utilsfromnvtripy.trace.ops.unaryimportRelufromnvtripy.frontendimportwrappersfromnvtripy.commonimportdatatypefromnvtripy.commonimportdatatypeasdtfromnvtripy.frontend.constraintsimportGetInput,GetReturn,OneOf
[docs]@export.public_api(document_under="operations/functions")@wrappers.interface(input_requirements=OneOf(GetInput("input").dtype,[dt.float32,dt.float16,dt.bfloat16,dt.int4,dt.int32,dt.int64,dt.int8]),output_guarantees=GetReturn(0).dtype==GetInput("input").dtype,)defrelu(input:"nvtripy.Tensor")->"nvtripy.Tensor":r""" Applies Rectified Linear Unit (RELU) function to each element of the input tensor: :math:`\text{relu}(x) = \max(0,x)` Args: input: The input tensor. Returns: A tensor of the same shape as the input. .. code-block:: python :linenos: input = tp.Tensor([1., 2., 3., 4.]) output = tp.relu(input) t = torch.tensor([1, 2, 3, 4], dtype=torch.float32) # doc: omit assert tp.allclose(output, tp.Tensor(torch.nn.functional.relu(t))) """fromnvtripy.frontend.ops.binary.maximumimportmaximumifissubclass(input.dtype,datatype.integer):# Activation in TensorRT does not support integral types.returnmaximum(input,0)returnop_utils.create_op(Relu,[input])