Source code for nvtripy.frontend.ops.unary.relu

#
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from nvtripy import export
from nvtripy.frontend.ops import utils as op_utils
from nvtripy.trace.ops.unary import Relu
from nvtripy.utils import wrappers
from nvtripy.common import datatype


[docs] @export.public_api(document_under="operations/functions") @wrappers.interface( dtype_constraints={"input": "T1", wrappers.RETURN_VALUE: "T1"}, dtype_variables={ "T1": ["float32", "float16", "bfloat16", "int4", "int32", "int64", "int8"], }, ) def relu(input: "nvtripy.Tensor") -> "nvtripy.Tensor": r""" Applies Rectified Linear Unit (RELU) function to each element of the input tensor: :math:`\text{relu}(x) = \max(0,x)` Args: input: The input tensor. Returns: A tensor of the same shape as the input. .. code-block:: python :linenos: input = tp.Tensor([1., 2., 3., 4.], dtype=tp.float32) output = tp.relu(input) t = torch.tensor([1, 2, 3, 4], dtype=torch.float32) # doc: omit assert tp.allclose(output, tp.Tensor(torch.nn.functional.relu(t))) """ from nvtripy.frontend.ops.binary.maximum import maximum from nvtripy.frontend.tensor import Tensor if issubclass(input.dtype, datatype.integer): # Activation in TensorRT does not support integral types. return maximum(input, Tensor(0, dtype=input.dtype)) return op_utils.create_op(Relu, [input])