Source code for nvtripy.frontend.ops.where

#
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#


from nvtripy import export
from nvtripy.frontend.ops import utils as op_utils
from nvtripy.trace.ops.where import Where
from nvtripy.utils import wrappers


[docs] @export.public_api(document_under="operations/functions") @wrappers.interface( dtype_constraints={"condition": "T2", "input": "T1", "other": "T1", wrappers.RETURN_VALUE: "T1"}, dtype_variables={ "T1": ["float32", "float16", "bfloat16", "int8", "int32", "int64"], "T2": ["bool"], }, ) def where(condition: "nvtripy.Tensor", input: "nvtripy.Tensor", other: "nvtripy.Tensor") -> "nvtripy.Tensor": r""" Returns a new tensor of elements selected from either ``input`` or ``other``, depending on ``condition``. Args: condition: The condition tensor. Where this is ``True``, elements are selected from ``input``. Otherwise, elements are selected from ``other``. input: Tensor of values selected at indices where condition is ``True``. other: Tensor values selected at indices where condition is ``False``. Returns: A new tensor with the broadcasted shape. Constraints: All three parameters must be broadcast-compatible with each other. .. code-block:: python :linenos: condition = tp.Tensor([[True, False], [True, True]]) input = tp.ones([2, 2], dtype=tp.float32) other = tp.zeros([2, 2], dtype=tp.float32) output = tp.where(condition, input, other) assert np.array_equal(cp.from_dlpack(output).get(), np.array([[1, 0], [1, 1]], dtype=np.float32)) """ from nvtripy.frontend.dimension_size import DimensionSize condition, input, other = op_utils.match_ranks(condition, input, other) return op_utils.create_op( Where, [condition, input, other], cast_to_dimension_size=isinstance(input, DimensionSize) and isinstance(other, DimensionSize), )