#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from dataclasses import dataclass
from nvtripy import export
from nvtripy.frontend.trace.ops import utils as op_utils
from nvtripy.frontend.trace.ops.base import BaseTraceOp
from nvtripy.utils import wrappers
@dataclass(repr=False)
class Cast(BaseTraceOp):
dtype: "nvtripy.common.dtype"
infer_rank = op_utils.InferRankPolicies.same_as_input()
def infer_dtypes(self):
self.outputs[0].dtype = self.dtype
def to_flat_ir(self, inputs, outputs):
import nvtripy.frontend.trace.ops.utils as op_utils
from nvtripy.common.datatype import bool as tp_bool
from nvtripy.common.datatype import float32, int32, int64
from nvtripy.flat_ir.ops import CompareOp, ConstantOp, ConvertOp, DynamicBroadcastOp
from nvtripy.flat_ir.tensor import FlatIRTensor
# If we need to create a constant (namely for comparing with zero), it has to use one of these dtypes.
# If the input is not one of these dtypes, the constant needs to be created in one of these and converted.
DTYPES_FOR_CONSTANTS = {float32, int32, int64}
convert_input = inputs[0]
# For conversion to bool, we must compare with 0 since the underlying semantics for StableHLO
# are to do truncation for conversion to integer types (and bools are i1). This would get
# unintended results for even numbers, which truncate to 0 in i1.
if self.dtype == tp_bool:
# Creating a zero tensor uses the same logic as the zeros_like initializer
# If the input dtype does not allow directly creating a Tripy array, we have to use another like f32
# and then cast the zeros tensor.
zero_dtype = convert_input.dtype if convert_input.dtype in DTYPES_FOR_CONSTANTS else float32
single_zero = FlatIRTensor.build(
shape=[],
rank=0,
dtype=zero_dtype,
device=convert_input.device,
reason_details=["Zero scalar for casting to bool"],
)
ConstantOp.build([], [single_zero], data=0)
zeros_shape = op_utils.get_shape_of_tensor(convert_input)
zeros = FlatIRTensor.build(
shape=convert_input.shape,
rank=convert_input.rank,
dtype=zero_dtype,
device=convert_input.device,
reason_details=["Tensor of zeroes for comparing to cast to bool"],
)
DynamicBroadcastOp.build([single_zero, zeros_shape], [zeros], broadcast_dim=[])
if zero_dtype != convert_input.dtype:
zero_output = FlatIRTensor.build(
shape=zeros.shape,
rank=zeros.rank,
dtype=convert_input.dtype,
device=zeros.device,
reason_details=[
f"Cast zero tensor because it cannot be created directly from array with dtype {convert_input.dtype}"
],
)
ConvertOp.build([zeros], [zero_output])
zeros = zero_output
CompareOp.build([convert_input, zeros], outputs, compare_direction="NE")
return
ConvertOp.build([convert_input], outputs)
[docs]
@export.public_api(document_under="operations/functions")
@wrappers.interface(
dtype_constraints={"input": "T1", "dtype": "T2", wrappers.RETURN_VALUE: "T2"},
dtype_variables={
"T1": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"],
"T2": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"],
},
dtype_exceptions=[
{"T1": "float8", "T2": "int4"},
{"T1": "float8", "T2": "int8"},
{"T1": "float8", "T2": "int64"},
{"T1": "int4", "T2": "float8"},
{"T1": "int4", "T2": "int8"},
{"T1": "int4", "T2": "int64"},
],
)
def cast(input: "nvtripy.Tensor", dtype: "nvtripy.dtype") -> "nvtripy.Tensor":
r"""
Returns a tensor with the contents of the input tensor casted to the specified data type.
For casts into quantized datatypes (:class:`int4` and :class:`float8`), this performs a per-tensor
quantization into that datatype with scale 1.0; for casts `from` those datatypes, this performs
a per-tensor dequantization with scale 1.0. Direct use of :func:`quantize` and :func:`dequantize` allows
for finer control over these parameters.
Args:
input: The input tensor.
dtype: The desired data type.
Returns:
A tensor containing the casted values.
.. code-block:: python
:linenos:
input = tp.Tensor([1, 2], dtype=tp.int32)
output = tp.cast(input, tp.float32)
assert np.array_equal(cp.from_dlpack(output).get(), np.array([1, 2], dtype=np.float32))
.. seealso:: :func:`quantize`, :func:`dequantize`
"""
from nvtripy.common.datatype import bool as tp_bool
from nvtripy.common.datatype import float32, int8
from nvtripy.frontend.trace.ops.dequantize import dequantize
from nvtripy.frontend.trace.ops.quantize import quantize
from nvtripy.frontend.trace.ops.utils import is_quantized_dtype
if input.dtype == dtype:
return input
# Note: we check for int8 below because MLIR-TRT can handle it in ordinary conversions
# even though it is a quantized dtype
# If given a quantized input, dequantize before converting. If bool is the target dtype,
# we do still need to quantize int8s because it compiles into an MLIR-TRT *comparison* op
if is_quantized_dtype(input.dtype) and (input.dtype != int8 or dtype == tp_bool):
dequant_dtype = float32
input = dequantize(input, 1.0, dequant_dtype)
if dtype == dequant_dtype:
return input
if is_quantized_dtype(dtype) and dtype != int8:
if input.dtype != float32:
input = Cast.build([input], float32)
return quantize(input, 1.0, dtype)
return Cast.build([input], dtype)