Source code for nvtripy.frontend.trace.ops.concatenate
## SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.# SPDX-License-Identifier: Apache-2.0## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.#fromdataclassesimportdataclassfromtypingimportSequencefromnvtripyimportexportfromnvtripy.common.exceptionimportraise_errorfromnvtripy.frontend.trace.ops.baseimportBaseTraceOpimportnvtripy.frontend.trace.ops.utilsasop_utilsfromnvtripy.utilsimportwrappers@dataclass(repr=False)classConcatenate(BaseTraceOp):dim:intinfer_rank=op_utils.InferRankPolicies.max_of_inputs()definfer_devices(self):self.outputs[0].device=self.inputs[0].devicedefto_flat_ir(self,inputs,outputs):fromnvtripy.flat_ir.opsimportConcatenateOpifself.dim<0:self.dim+=inputs[0].rankConcatenateOp.build(inputs,outputs,dim=self.dim)
[docs]@export.public_api(document_under="operations/functions")@wrappers.interface(dtype_constraints={"tensors":"T1",wrappers.RETURN_VALUE:"T1"},dtype_variables={"T1":["float32","float16","bfloat16","int4","int8","int32","int64","bool"],},)defconcatenate(tensors:Sequence["nvtripy.Tensor"],dim:int)->"nvtripy.Tensor":r""" Returns a copy of the input tensor on the target device. Args: tensors: Sequence of tensors of the same type and having the same shape except in the concatenated dimension. dim: the dimension over which the tensors are concatenated. Returns: Concatenated tensor with shape along `dim` axis equal to sum of dimensions at `dim` axis for all inputs. .. code-block:: python :linenos: a = tp.iota((1, 2), dtype=tp.float32) b = tp.iota((2, 2), dtype=tp.float32) output = tp.concatenate([a, b], dim=0) assert np.array_equal(cp.from_dlpack(output).get(), np.concatenate((cp.from_dlpack(a).get(), cp.from_dlpack(b).get()), axis=0)) """ifnottensors:raise_error(f"Expected a non-empty list of tensors, got {tensors}")iflen(tensors)==1:returntensors[0]returnConcatenate.build(list(tensors),dim)