Source code for nvtripy.frontend.trace.ops.copy

#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from dataclasses import dataclass

import nvtripy.frontend.trace.ops.utils as op_utils
from nvtripy import export
from nvtripy.common.device import device
from nvtripy.frontend.trace.ops.base import BaseTraceOp
from nvtripy.utils import wrappers


@dataclass(repr=False)
class Copy(BaseTraceOp):
    target: device

    infer_rank = op_utils.InferRankPolicies.same_as_input()

    def infer_devices(self):
        self.outputs[0].device = self.target

    def to_flat_ir(self, inputs, outputs):
        from nvtripy.flat_ir.ops import CopyOp

        CopyOp.build(inputs, outputs, target=self.target)


[docs] @export.public_api(document_under="operations/functions") @wrappers.interface( dtype_constraints={"input": "T1", wrappers.RETURN_VALUE: "T1"}, dtype_variables={ "T1": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"], }, ) def copy(input: "nvtripy.Tensor", device: "nvtripy.device") -> "nvtripy.Tensor": r""" Returns a copy of the input tensor on the target device. Args: input: Tensor that will be copied device: The target device. Returns: A copy of input tensor on target device. .. code-block:: python :linenos: input = tp.Tensor([1, 2], device=tp.device("gpu")) output = tp.copy(input, tp.device("cpu")) assert np.array_equal(np.from_dlpack(output), np.array([1, 2], dtype=np.float32)) assert output.trace_tensor.producer.device.kind == "cpu" """ return Copy.build([input], device)