#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from dataclasses import dataclass
from nvtripy import export
from nvtripy.common.exception import raise_error
from nvtripy.frontend.trace.ops import utils as op_utils
from nvtripy.frontend.trace.ops.base import BaseTraceOp
from nvtripy.types import ShapeLike
from nvtripy.utils import wrappers
@dataclass(repr=False)
class Expand(BaseTraceOp):
infer_rank = op_utils.InferRankPolicies.same_as_shape_of_shape_input(1)
def infer_dtypes(self):
self.outputs[0].dtype = self.inputs[0].dtype
def to_flat_ir(self, inputs, outputs):
from nvtripy.flat_ir.ops import DynamicBroadcastOp
broadcast_dim = op_utils.get_broadcast_in_dim(inputs[0].rank, outputs[0].rank)
DynamicBroadcastOp.build(
[inputs[0], inputs[1]],
outputs,
broadcast_dim=broadcast_dim,
)
def process_sizes(input: "nvtripy.Tensor", sizes: ShapeLike):
if len(sizes) < input.rank:
raise_error(
"The length of `sizes` must be greater or equal to input tensor's rank.",
[f"sizes has length: {len(sizes)}", f" input rank: {input.rank}"],
)
num_prepended = len(sizes) - input.rank
out_shape = list(sizes[:num_prepended]) + [
inp_dim if op_utils.is_minus_one(out_dim) else out_dim
for inp_dim, out_dim in zip(input.shape, sizes[num_prepended:])
]
if any(op_utils.is_minus_one(dim) for dim in out_shape):
raise_error(
"Cannot use -1 for prepended dimension.",
[
f"{num_prepended} dimension(s) are going to be prepended since the `sizes` argument "
f"contains more elements than the number of dimensions in the input.\n"
f"Prepended dimensions may not contain -1 since there is no corresponding "
f"dimension in the input to copy from, but got: {sizes}"
],
)
return {"sizes": out_shape}
[docs]
@export.public_api(document_under="operations/functions")
@wrappers.interface(
dtype_constraints={"input": "T1", wrappers.RETURN_VALUE: "T1"},
dtype_variables={
"T1": ["float32", "float16", "bfloat16", "float8", "int8", "int32", "int64", "bool"],
},
convert_to_tensors=True,
conversion_preprocess_func=process_sizes,
)
def expand(input: "nvtripy.Tensor", sizes: ShapeLike) -> "nvtripy.Tensor":
"""
Returns a new tensor based on the input tensor with singleton dimensions expanded to a larger size.
Args:
input: The input tensor.
sizes: The desired expanded size.
A value of :math:`-1` indicates that the dimension should not be modified.
If the length of this parameter exceeds the rank of the tensor, new dimensions
are prepended.
Returns:
The new tensor.
.. code-block:: python
:linenos:
input = tp.iota((2, 1), dtype=tp.float32)
output = tp.expand(input, (-1, 4))
assert np.array_equal(cp.from_dlpack(output).get(), np.broadcast_to(cp.from_dlpack(input).get(), (2, 4)))
.. code-block:: python
:linenos:
:caption: Increasing Tensor Rank
input = tp.iota((1, 1), dtype=tp.float32)
output = tp.expand(input, (3, -1, -1))
assert np.array_equal(cp.from_dlpack(output).get(), np.broadcast_to(cp.from_dlpack(input).get(), (3, 1, 1)))
"""
return Expand.build([input, sizes])