Source code for nvtripy.frontend.trace.ops.iota

#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from dataclasses import dataclass
from typing import Optional

import nvtripy.frontend.trace.ops.utils as op_utils
from nvtripy import export, utils
from nvtripy.common import datatype
from nvtripy.frontend import utils as frontend_utils
from nvtripy.frontend.trace.ops.base import BaseTraceOp
from nvtripy.types import ShapeLike
from nvtripy.utils import wrappers


@dataclass(repr=False)
class Iota(BaseTraceOp):
    dim: int
    output_rank: int
    dtype: datatype.dtype

    infer_rank = op_utils.InferRankPolicies.same_as_shape_of_shape_input()

    def infer_dtypes(self):
        self.outputs[0].dtype = self.dtype

    def infer_devices(self):
        from nvtripy.common import device

        self.outputs[0].device = device.create_directly("gpu", 0)

    def to_flat_ir(self, inputs, outputs):
        from nvtripy.flat_ir.ops import DynamicIotaOp

        DynamicIotaOp.build(inputs, outputs, dim=self.dim)


def iota_impl(shape: "nvtripy.Tensor", dim: int, dtype: datatype.dtype, output_rank: int) -> "nvtripy.Tensor":
    from nvtripy.frontend.trace.ops.cast import cast

    # Allocate a float32 tensor and cast the output to dtype.
    # `tensorrt.linspace` op result #0 must be 0D/1D/2D/3D/4D/5D/6D/7D/8D tensor of 32-bit float or 32-bit signless integer values.
    if dtype not in (datatype.float32, datatype.int32, datatype.int64):
        result = Iota.build([shape], dim, output_rank, datatype.float32)
        return cast(result, dtype)

    return Iota.build([shape], dim, output_rank, dtype)


[docs] @export.public_api(document_under="operations/initializers") @wrappers.interface( dtype_constraints={"dtype": "T1", wrappers.RETURN_VALUE: "T1"}, dtype_variables={ "T1": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"], }, convert_to_tensors=True, conversion_preprocess_func=lambda shape, dim=None, dtype=None: ( {"dim": frontend_utils.process_dim(dim, len(shape))} if dim is not None else {} ), ) def iota(shape: ShapeLike, dim: int = 0, dtype: datatype.dtype = datatype.float32) -> "nvtripy.Tensor": """ Fills an output tensor with consecutive values starting from zero along the given dimension. Args: shape: The desired shape. dim: Dimension along which to perform the iota operation. This cannot exceed the rank of the specified shape. dtype: The desired data type. Returns: A tensor of shape ``shape`` and data type ``dtype``. .. code-block:: python :linenos: output = tp.iota((3,), dim=-1) assert np.array_equal(cp.from_dlpack(output).get(), np.arange(0, 3, dtype=np.float32)) """ return iota_impl(shape, dim, dtype, output_rank=None)
[docs] @export.public_api(document_under="operations/initializers") @wrappers.interface( dtype_constraints={"input": "T1", "dtype": "T2", wrappers.RETURN_VALUE: "T2"}, dtype_variables={ "T1": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"], "T2": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"], }, ) def iota_like(input: "nvtripy.Tensor", dim: int = 0, dtype: Optional[datatype.dtype] = None) -> "nvtripy.Tensor": """ Returns a tensor of the same shape and data type as the input tensor, with consecutive values starting from zero along the given dimension. Args: input: Input tensor. dim: Dimension along which to perform the iota operation. This cannot exceed the rank of the specified shape. dtype: The desired data type. This will override the data type inferred from the input tensor. Returns: A tensor of the same shape and data type (unless ``dtype`` is provided) as the input. .. code-block:: python :linenos: input = tp.Tensor([1, 2, 3]) output = tp.iota_like(input) assert np.array_equal(cp.from_dlpack(output).get(), np.arange(0, 3, dtype=np.float32)) """ dim = frontend_utils.process_dim(dim, input.rank) return iota_impl( frontend_utils.tensor_from_shape_like(input.shape), dim, utils.utils.default(dtype, input.dtype), output_rank=input.rank, )