Source code for nvtripy.frontend.trace.ops.pad

#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from dataclasses import dataclass
from typing import Sequence, Union

from nvtripy import export
from nvtripy.common.exception import raise_error
from nvtripy.frontend import utils as frontend_utils
from nvtripy.frontend.trace.ops.base import BaseTraceOp
from nvtripy.types import ShapeLike
import nvtripy.frontend.trace.ops.utils as op_utils
from nvtripy.utils import wrappers


@dataclass(repr=False)
class Pad(BaseTraceOp):

    padding_value: Union[int, float]

    infer_rank = op_utils.InferRankPolicies.same_as_input()

    def infer_dtypes(self):
        self.outputs[0].dtype = self.inputs[0].dtype

    def to_flat_ir(self, inputs, outputs):
        from nvtripy.common.datatype import int32
        from nvtripy.flat_ir.ops import ConstantOp, DynamicPadOp
        from nvtripy.flat_ir.tensor import FlatIRTensor

        pad_val_tensor = FlatIRTensor.build(
            shape=(),
            rank=0,
            dtype=outputs[0].dtype,
            device=outputs[0].device,
            reason_details=[f"create the constant value tensor (containing {self.padding_value}) for a pad operation"],
        )
        ConstantOp.build([], [pad_val_tensor], data=self.padding_value)

        # interior_padding is not supported
        # create the default value
        pad_size_shape = (inputs[0].rank,)
        interior_pad_tensor = FlatIRTensor.build(
            shape=pad_size_shape,
            rank=1,
            dtype=int32,
            device=outputs[0].device,
            reason_details=[f"create the default value for interior_padding argument."],
        )
        ConstantOp.build([], [interior_pad_tensor], data=[0] * inputs[0].rank)

        # [operand, pad_val, low, high, interior]
        inputs.insert(1, pad_val_tensor)
        inputs.append(interior_pad_tensor)
        # set padding size tensors' shape
        # because stablehlo requires static shapes
        inputs[2].shape = pad_size_shape
        inputs[3].shape = pad_size_shape
        DynamicPadOp.build(inputs, outputs)


[docs] @export.public_api(document_under="operations/functions") @wrappers.interface( dtype_constraints={"input": "T1", wrappers.RETURN_VALUE: "T1"}, dtype_variables={"T1": ["float32", "float16", "bool", "int32"]}, ) def pad( input: "nvtripy.Tensor", pad: Sequence[ShapeLike], mode: str = "constant", value: Union[int, float] = 0 ) -> "nvtripy.Tensor": r""" Pads the input tensor. Args: input: The input tensor. pad: A sequence of padding sizes of each dimension. Its length must be equal to the rank of ``input``. Each element of ``pad`` is a tuple of integers or :class:`DimensionSize` s ``(low, high)``, which represents the padding sizes before the lowest index and after the highest index at the corresponding dimension. mode: The padding mode. Only "constant" is supported. value: The padding value for "constant" mode. Returns: The padded tensor. .. code-block:: python :linenos: :caption: Constant padding. input = tp.reshape(tp.arange(6, dtype=tp.float32), (2, 3)) output = tp.pad(input, ((1, 0), (0, 1))) input_np = np.arange(6, dtype=np.float32).reshape((2, 3)) # doc: omit expected = np.pad(input_np, ((1, 0), (0, 1))) # doc: omit assert np.array_equal(cp.from_dlpack(output).get(), expected) """ if len(pad) != input.rank: raise_error( "`pad` length must equal to the rank of `input`.", [f"Got pad={pad}, ", f" input's rank={input.rank}"], ) supported_modes = {"constant"} if mode not in supported_modes: raise_error( "Unsupported padding mode.", [f"Got mode={mode}, while supported modes are {supported_modes}"], ) padding_low, padding_high = list(zip(*pad)) return Pad.build( [ input, frontend_utils.tensor_from_shape_like(padding_low), frontend_utils.tensor_from_shape_like(padding_high), ], value, )