#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from dataclasses import dataclass
from typing import Sequence, Union
from nvtripy import export
from nvtripy.common.exception import raise_error
from nvtripy.frontend import utils as frontend_utils
from nvtripy.frontend.trace.ops.base import BaseTraceOp
from nvtripy.types import ShapeLike
import nvtripy.frontend.trace.ops.utils as op_utils
from nvtripy.utils import wrappers
@dataclass(repr=False)
class Pad(BaseTraceOp):
padding_value: Union[int, float]
infer_rank = op_utils.InferRankPolicies.same_as_input()
def infer_dtypes(self):
self.outputs[0].dtype = self.inputs[0].dtype
def to_flat_ir(self, inputs, outputs):
from nvtripy.common.datatype import int32
from nvtripy.flat_ir.ops import ConstantOp, DynamicPadOp
from nvtripy.flat_ir.tensor import FlatIRTensor
pad_val_tensor = FlatIRTensor.build(
shape=(),
rank=0,
dtype=outputs[0].dtype,
device=outputs[0].device,
reason_details=[f"create the constant value tensor (containing {self.padding_value}) for a pad operation"],
)
ConstantOp.build([], [pad_val_tensor], data=self.padding_value)
# interior_padding is not supported
# create the default value
pad_size_shape = (inputs[0].rank,)
interior_pad_tensor = FlatIRTensor.build(
shape=pad_size_shape,
rank=1,
dtype=int32,
device=outputs[0].device,
reason_details=[f"create the default value for interior_padding argument."],
)
ConstantOp.build([], [interior_pad_tensor], data=[0] * inputs[0].rank)
# [operand, pad_val, low, high, interior]
inputs.insert(1, pad_val_tensor)
inputs.append(interior_pad_tensor)
# set padding size tensors' shape
# because stablehlo requires static shapes
inputs[2].shape = pad_size_shape
inputs[3].shape = pad_size_shape
DynamicPadOp.build(inputs, outputs)
[docs]
@export.public_api(document_under="operations/functions")
@wrappers.interface(
dtype_constraints={"input": "T1", wrappers.RETURN_VALUE: "T1"},
dtype_variables={"T1": ["float32", "float16", "bool", "int32"]},
)
def pad(
input: "nvtripy.Tensor", pad: Sequence[ShapeLike], mode: str = "constant", value: Union[int, float] = 0
) -> "nvtripy.Tensor":
r"""
Pads the input tensor.
Args:
input: The input tensor.
pad: A sequence of padding sizes of each dimension. Its length must be equal to the rank
of ``input``. Each element of ``pad`` is a tuple of integers or :class:`DimensionSize` s ``(low, high)``,
which represents the padding sizes before the lowest index and after the highest index at
the corresponding dimension.
mode: The padding mode. Only "constant" is supported.
value: The padding value for "constant" mode.
Returns:
The padded tensor.
.. code-block:: python
:linenos:
:caption: Constant padding.
input = tp.reshape(tp.arange(6, dtype=tp.float32), (2, 3))
output = tp.pad(input, ((1, 0), (0, 1)))
input_np = np.arange(6, dtype=np.float32).reshape((2, 3)) # doc: omit
expected = np.pad(input_np, ((1, 0), (0, 1))) # doc: omit
assert np.array_equal(cp.from_dlpack(output).get(), expected)
"""
if len(pad) != input.rank:
raise_error(
"`pad` length must equal to the rank of `input`.",
[f"Got pad={pad}, ", f" input's rank={input.rank}"],
)
supported_modes = {"constant"}
if mode not in supported_modes:
raise_error(
"Unsupported padding mode.",
[f"Got mode={mode}, while supported modes are {supported_modes}"],
)
padding_low, padding_high = list(zip(*pad))
return Pad.build(
[
input,
frontend_utils.tensor_from_shape_like(padding_low),
frontend_utils.tensor_from_shape_like(padding_high),
],
value,
)