Source code for nvtripy.frontend.trace.ops.permute
## SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.# SPDX-License-Identifier: Apache-2.0## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.#fromdataclassesimportdataclassfromtypingimportSequencefromnvtripyimportexportfromnvtripy.common.exceptionimportraise_errorfromnvtripy.frontend.trace.opsimportutilsasop_utilsfromnvtripy.frontend.trace.ops.baseimportBaseTraceOpfromnvtripy.utilsimportwrappers@dataclass(repr=False)classPermute(BaseTraceOp):permutation:Sequence[int]infer_rank=op_utils.InferRankPolicies.same_as_input()defto_flat_ir(self,inputs,outputs):fromnvtripy.flat_ir.opsimportTransposeOpTransposeOp.build(inputs,outputs,perm=self.permutation)
[docs]@export.public_api(document_under="operations/functions")@wrappers.interface(dtype_constraints={"input":"T1",wrappers.RETURN_VALUE:"T1"},dtype_variables={"T1":["float32","float16","bfloat16","float8","int4","int8","int32","int64","bool"]},)defpermute(input:"nvtripy.Tensor",perm:Sequence[int])->"nvtripy.Tensor":""" Returns a tensor with its dimensions permuted. Args: input: The input tensor. perm: The desired ordering of dimensions. It must contain all integers in :math:`[0..N-1]` exactly once, where :math:`N` is the rank of the input tensor. Returns: A new tensor. .. code-block:: python :linenos: input = tp.reshape(tp.arange(6, dtype=tp.float32), (2, 3)) output = tp.permute(input, (1, 0)) assert np.array_equal(cp.from_dlpack(output).get(), np.transpose(np.arange(6, dtype=np.float32).reshape(2, 3), (1, 0))) """iflen(perm)!=input.rank:raise_error("Invalid permutation.",["Permutation must have a number of elements equal to the number of dimensions in the input.\n"f"Note: Permutation was: {perm}, which has {len(perm)} element(s), but input has {input.rank} dimension(s)."],)iflist(sorted(perm))!=list(range(input.rank)):raise_error("Invalid permutation.",[f"Permutation must contain every integer between 0 and {input.rank-1} exactly once, but permutation was: {perm}"],)returnPermute.build([input],perm)