#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from dataclasses import dataclass
from typing import Any, Dict, List, Sequence, Tuple, Union
from nvtripy import export
from nvtripy.frontend.trace.ops.base import BaseTraceOp
@dataclass(repr=False)
class Plugin(BaseTraceOp):
name: str
version: str
namespace: str
output_info: List[Tuple[int, "nvtripy.dtype"]]
creator_params: Dict[str, Any]
def infer_dtypes(self):
for out, (_, dtype) in zip(self.outputs, self.output_info):
out.dtype = dtype
def infer_rank(self):
for out, (rank, _) in zip(self.outputs, self.output_info):
out.rank = rank
def to_flat_ir(self, inputs, outputs):
from nvtripy.flat_ir.ops import PluginOp
PluginOp.build(inputs, outputs, self.name, self.version, self.namespace, self.creator_params)
[docs]
@export.public_api(document_under="operations/functions")
def plugin(
name: str,
inputs: Sequence["nvtripy.Tensor"],
output_info: List[Tuple[int, "nvtripy.dtype"]],
version: str = "1",
namespace: str = "",
**kwargs,
) -> Union["Tensor", List["Tensor"]]:
"""
Calls a TensorRT plugin. Only the ``IPluginV2DynamicExt`` and ``IPluginV3`` interfaces are supported.
Args:
name: The name of the plugin to call.
inputs: The inputs to the plugin.
output_info: A list of tuples that indicate the rank and data type for each output.
version: The version of the plugin to call.
namespace: The namespace of the plugin.
**kwargs: Additional arguments to pass to the plugin as plugin fields.
These should be primitive Python types like ``int`` s, ``float`` s, ``str`` s etc.
Fields that expect ``Dims`` should be provided as a ``tuple`` of ``int`` s.
Fields that expect multiple values can be provided as ``list`` s or ``tuple`` s.
Returns:
The output(s) of the plugin either as a single tensor if there is only one output,
or a list of tensors otherwise.
.. code-block:: python
:linenos:
inp = tp.iota((2, 1, 4))
out = tp.plugin(
"CustomGeluPluginDynamic",
[inp],
# GELU has a single output which always has the same rank and data
# type as the input.
output_info=[(inp.rank, inp.dtype)],
# The GELU plugin expects a `type_id` parameter indicating the precision
# to use. `0` indicates float32.
type_id=0,
)
assert tp.allclose(out,tp.gelu(inp))
"""
return Plugin.build(inputs, name, version, namespace, output_info, kwargs, num_outputs=len(output_info))