Source code for nvtripy.frontend.trace.ops.plugin

#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from dataclasses import dataclass
from typing import Any, Dict, List, Sequence, Tuple, Union

from nvtripy import export
from nvtripy.frontend.trace.ops.base import BaseTraceOp


@dataclass(repr=False)
class Plugin(BaseTraceOp):
    name: str
    version: str
    namespace: str
    output_info: List[Tuple[int, "nvtripy.dtype"]]
    creator_params: Dict[str, Any]

    def infer_dtypes(self):
        for out, (_, dtype) in zip(self.outputs, self.output_info):
            out.dtype = dtype

    def infer_rank(self):
        for out, (rank, _) in zip(self.outputs, self.output_info):
            out.rank = rank

    def to_flat_ir(self, inputs, outputs):
        from nvtripy.flat_ir.ops import PluginOp

        PluginOp.build(inputs, outputs, self.name, self.version, self.namespace, self.creator_params)


[docs] @export.public_api(document_under="operations/functions") def plugin( name: str, inputs: Sequence["nvtripy.Tensor"], output_info: List[Tuple[int, "nvtripy.dtype"]], version: str = "1", namespace: str = "", **kwargs, ) -> Union["Tensor", List["Tensor"]]: """ Calls a TensorRT plugin. Only the ``IPluginV2DynamicExt`` and ``IPluginV3`` interfaces are supported. Args: name: The name of the plugin to call. inputs: The inputs to the plugin. output_info: A list of tuples that indicate the rank and data type for each output. version: The version of the plugin to call. namespace: The namespace of the plugin. **kwargs: Additional arguments to pass to the plugin as plugin fields. These should be primitive Python types like ``int`` s, ``float`` s, ``str`` s etc. Fields that expect ``Dims`` should be provided as a ``tuple`` of ``int`` s. Fields that expect multiple values can be provided as ``list`` s or ``tuple`` s. Returns: The output(s) of the plugin either as a single tensor if there is only one output, or a list of tensors otherwise. .. code-block:: python :linenos: inp = tp.iota((2, 1, 4)) out = tp.plugin( "CustomGeluPluginDynamic", [inp], # GELU has a single output which always has the same rank and data # type as the input. output_info=[(inp.rank, inp.dtype)], # The GELU plugin expects a `type_id` parameter indicating the precision # to use. `0` indicates float32. type_id=0, ) assert tp.allclose(out,tp.gelu(inp)) """ return Plugin.build(inputs, name, version, namespace, output_info, kwargs, num_outputs=len(output_info))