Source code for nvtripy.frontend.trace.ops.reshape

#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import math
from dataclasses import dataclass

from nvtripy import export
from nvtripy.common.exception import raise_error
from nvtripy.frontend.trace.ops import utils as op_utils
from nvtripy.frontend.trace.ops.base import BaseTraceOp
from nvtripy.types import ShapeLike
from nvtripy.utils import wrappers


@dataclass(repr=False)
class Reshape(BaseTraceOp):

    output_rank: int

    infer_rank = op_utils.InferRankPolicies.same_as_shape_of_shape_input(1)

    def infer_dtypes(self):
        self.outputs[0].dtype = self.inputs[0].dtype

    def to_flat_ir(self, inputs, outputs):
        from nvtripy.flat_ir.ops import DynamicReshapeOp

        DynamicReshapeOp.build(inputs, outputs)


def infer_dimensions(input: "nvtripy.Tensor", shape: ShapeLike) -> ShapeLike:

    num_unknown_dims = len([dim for dim in shape if op_utils.is_minus_one(dim)])
    if num_unknown_dims > 1:
        raise_error(f"The new shape can have at most one inferred dimension (denoted by -1)", [f"Got shape: {shape}."])

    if num_unknown_dims == 1:
        input_volume = math.prod(input.shape)
        known_dims_volume = math.prod(dim for dim in shape if not op_utils.is_minus_one(dim))
        inferred_dim = (
            input_volume // known_dims_volume
        )  # If we have scalars, the floor div ensures the result is an int.

        shape = [inferred_dim if op_utils.is_minus_one(dim) else dim for dim in shape]

    return {"shape": shape}


[docs] @export.public_api(document_under="operations/functions") @wrappers.interface( dtype_constraints={"input": "T1", wrappers.RETURN_VALUE: "T1"}, dtype_variables={"T1": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"]}, convert_to_tensors=True, conversion_preprocess_func=infer_dimensions, ) def reshape(input: "nvtripy.Tensor", shape: ShapeLike) -> "nvtripy.Tensor": """ Returns a new tensor with the contents of the input tensor in the specified shape. Args: input: The input tensor. shape: The desired compatible shape. If a shape dimension is -1, its value is inferred based on the other dimensions and the number of elements in the input. Atmost one dimension can be -1. Returns: A new tensor with the specified shape. .. code-block:: python :linenos: input = tp.iota((2, 3), dtype=tp.float32) output = tp.reshape(input, (1, 6)) assert np.array_equal(cp.from_dlpack(output).get(), np.reshape(cp.from_dlpack(input).get(), (1, 6))) """ return Reshape.build([input, shape], None)