Source code for tripy.frontend.ops.gelu

#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import math

from tripy import export, constraints


[docs] @export.public_api(document_under="operations/functions") @constraints.dtypes( constraints={"input": "T1", constraints.RETURN_VALUE: "T1"}, variables={ "T1": ["float32", "float16", "bfloat16"], }, ) def gelu(input: "tripy.Tensor") -> "tripy.Tensor": r""" Applies an approximated Gaussian Error Linear Units (GELU) function to each element of the input tensor: :math:`\text{gelu}(x) = 0.5 * x * (1 + \tanh(\sqrt{2 / \pi} * (x + 0.044715 * x^3)))` Args: input: The input tensor. Returns: A tensor of the same shape as the input. .. code-block:: python :linenos: :caption: Example input = tp.Tensor([1., 2., 3., 4.], dtype=tp.float32) output = tp.gelu(input) t = torch.tensor([1, 2, 3, 4], dtype=torch.float32) # doc: omit assert tp.allclose(output, tp.Tensor(torch.nn.functional.gelu(t, approximate='tanh'))) """ from tripy.frontend.trace.ops.unary_elementwise import tanh t1, t2, t3, t4, t5 = 0.5, math.sqrt(2.0 / math.pi), 0.044715, 3.0, 1.0 return t1 * input * (tanh(t2 * (input + t3 * (input**t4))) + t5)