Source code for tripy.frontend.ops.relu

#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from tripy import export, constraints


[docs] @export.public_api(document_under="operations/functions") @constraints.dtypes( constraints={"input": "T1", constraints.RETURN_VALUE: "T1"}, variables={ "T1": ["float32", "float16", "bfloat16", "int4", "int32", "int64", "bool", "int8"], }, ) def relu(input: "tripy.Tensor") -> "tripy.Tensor": r""" Applies Rectified Linear Unit (RELU) function to each element of the input tensor: :math:`\text{relu}(x) = \max(0,x)` Args: input: The input tensor. Returns: A tensor of the same shape as the input. .. code-block:: python :linenos: :caption: Example input = tp.Tensor([1., 2., 3., 4.], dtype=tp.float32) output = tp.relu(input) t = torch.tensor([1, 2, 3, 4], dtype=torch.float32) # doc: omit assert tp.allclose(output, tp.Tensor(torch.nn.functional.relu(t))) """ from tripy.frontend.ops import zeros from tripy.frontend.trace.ops.binary_elementwise import maximum mask = zeros((1,), dtype=input.dtype) return maximum(mask, input)