Source code for tripy.frontend.ops.softmax

#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from tripy import export, constraints


[docs] @export.public_api(document_under="operations/functions") @constraints.dtypes( constraints={"input": "T1", constraints.RETURN_VALUE: "T1"}, variables={ "T1": ["float32", "float16", "bfloat16"], }, ) def softmax(input: "tripy.Tensor", dim: int = None) -> "tripy.Tensor": r""" Applies the softmax function to the input tensor: :math:`\text{softmax}(x_{i}) = \Large \frac{e^{x_{i}}}{\sum_{j=1}^N e^{x_{j}}} \normalsize for\ i=1,2,\dots,N` where :math:`x_{i}` is the :math:`i^{th}` element along dimension ``dim`` and :math:`N` is the size of the dimension. Effectively, for each slice along ``dim``, elements are scaled such that they lie in the range :math:`[0, 1]` and sum to 1. Args: input: The input tensor. dim: The dimension along which softmax will be computed. If this is ``None``, softmax is applied over the whole input array. Returns: A tensor of the same shape as the input. .. code-block:: python :linenos: :caption: Example input = tp.iota([2, 2], dtype=tp.float32) output = tp.softmax(input, dim=0) assert tp.allclose(output, tp.Tensor(torch.Tensor([[0., 0.], [1., 1.]]).softmax(0))) """ from tripy.frontend.trace.ops.reduce import max, sum from tripy.frontend.trace.ops.unary_elementwise import exp exp_inp = exp(input - max(input, dim, keepdim=True)) return exp_inp / sum(exp_inp, dim, keepdim=True)