# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.# SPDX-License-Identifier: Apache-2.0## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.fromdataclassesimportdataclassfromtripyimportconstraints,exportfromtripy.common.exceptionimportraise_error
[docs]@export.public_api(document_under="operations/functions")@constraints.dtypes(constraints={"input":"T1",constraints.RETURN_VALUE:"T1"},variables={"T1":["float32","float16","bfloat16","float8","int4","int8","int32","int64","bool"]},)deftranspose(input:"tripy.Tensor",dim0:int,dim1:int)->"tripy.Tensor":""" Returns a new tensor that is a transposed version of the input tensor where ``dim0`` and ``dim1`` are swapped. Args: input: The input tensor. dim0: The first dimension to be transposed. dim1: The second dimension to be transposed. Returns: A new tensor. .. code-block:: python :linenos: :caption: Example input = tp.reshape(tp.arange(6, dtype=tp.float32), (2, 3)) output = tp.transpose(input, 0, 1) assert np.array_equal(cp.from_dlpack(output).get(), np.transpose(np.arange(6, dtype=np.float32).reshape(2, 3), (1, 0))) """fromtripy.frontend.trace.ops.permuteimportpermuteifinput.rank<2:raise_error("Transpose input must have at least 2 dimensions.",[f"Note: Input had {input.rank} dimensions."])perm=list(range(input.rank))perm[dim0],perm[dim1]=perm[dim1],perm[dim0]returnpermute(input,perm)