copy#

Overloads#

copy(exec, first, last, result)#

template<typename DerivedPolicy, typename InputIterator, typename OutputIterator>
OutputIterator thrust::copy(
const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
InputIterator first,
InputIterator last,
OutputIterator result,
)#

copy copies elements from the range [first, last) to the range [result, result + (last - first)). That is, it performs the assignments *result = *first, *(result + 1) = *(first + 1), and so on. Generally, for every integer n from 0 to last - first, copy performs the assignment *(result + n) = *(first + n). Unlike std::copy, copy offers no guarantee on order of operation. As a result, calling copy with overlapping source and destination ranges has undefined behavior.

The return value is result + (last - first).

The algorithm’s execution is parallelized as determined by exec.

The following code snippet demonstrates how to use copy to copy from one range to another using the thrust::device parallelization policy:

#include <thrust/copy.h>
#include <thrust/device_vector.h>
#include <thrust/execution_policy.h>
...

thrust::device_vector<int> vec0(100);
thrust::device_vector<int> vec1(100);
...

thrust::copy(thrust::device, vec0.begin(), vec0.end(), vec1.begin());

// vec1 is now a copy of vec0
Parameters:
  • exec – The execution policy to use for parallelization.

  • first – The beginning of the sequence to copy.

  • last – The end of the sequence to copy.

  • result – The destination sequence.

Template Parameters:
  • DerivedPolicy – The name of the derived execution policy.

  • InputIterator – must be a model of Input Iterator and InputIterator's value_type must be convertible to OutputIterator's value_type.

  • OutputIterator – must be a model of Output Iterator.

Returns:

The end of the destination sequence.

Pre:

result may be equal to first, but result shall not be in the range [first, last) otherwise.

copy(first, last, result)#

template<typename InputIterator, typename OutputIterator>
OutputIterator thrust::copy(
InputIterator first,
InputIterator last,
OutputIterator result,
)#

copy copies elements from the range [first, last) to the range [result, result + (last - first)). That is, it performs the assignments *result = *first, *(result + 1) = *(first + 1), and so on. Generally, for every integer n from 0 to last - first, copy performs the assignment *(result + n) = *(first + n). Unlike std::copy, copy offers no guarantee on order of operation. As a result, calling copy with overlapping source and destination ranges has undefined behavior.

The return value is result + (last - first).

The following code snippet demonstrates how to use copy to copy from one range to another.

#include <thrust/copy.h>
#include <thrust/device_vector.h>
...

thrust::device_vector<int> vec0(100);
thrust::device_vector<int> vec1(100);
...

thrust::copy(vec0.begin(), vec0.end(),
             vec1.begin());

// vec1 is now a copy of vec0
Parameters:
  • first – The beginning of the sequence to copy.

  • last – The end of the sequence to copy.

  • result – The destination sequence.

Template Parameters:
  • InputIterator – must be a model of Input Iterator and InputIterator's value_type must be convertible to OutputIterator's value_type.

  • OutputIterator – must be a model of Output Iterator.

Returns:

The end of the destination sequence.

Pre:

result may be equal to first, but result shall not be in the range [first, last) otherwise.